
25 Templates
Many of the ideas and examples presented in the last few chapters have illustrated ways
of making code "general purpose".  The collection classes in Chapter 21 were general
purpose storage structures for any kind of data item that could reasonably be handled
using void* (pointer to anything) pointers.  Classes like Queue and DynamicArray don't
depend in any way on the data elements stored and so are completely general purpose
and can be reused in any program.  Class AVL and class BTree from Chapter 24 are a
little more refined.  However they are again fairly general purpose, they work with data
items that are instances of any concrete class derived from their abstract classes Keyed
and KeyedStorable.

Templates represent one more step toward making code truly general purpose.  The
idea of a template is that it defines operations for an unbounded variety of related data
types.

You can have "template functions".  These define manipulations of some
unspecified generic form of data element.  The function will depend on the data
elements being capable of being manipulated in particular ways.  For example, a
function might require that data elements support assignment (operator=()), equality
and inequality tests (operator==(), operator!=()), comparisons (operator<()), and
stream output (operator<<(ostream&, ?&) global operator function).  But any data
element, whether it be an int or an Aircraft, that supports all these operations is
equally readily handled by the "function".

Most often, template classes are classes whose instances look after other data
elements.  Collection classes are preeminent examples, their instances provide storage
organization of other data elements.  The member functions of these template classes
are like individual template functions; they describe, in some general way, how to
manipulate data elements.  They work with any kind of data that supports the required
operations.

25

Template functions

Template classes
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25.1 A GENERAL FUNCTION AND ITS SPECIALIZATIONS

To make things concrete, consider a simple example – the function larger_of _two().
This function takes two data elements as arguments, and returns the larger.  In outline
form, its code is as follows:

Thing larger_of_two(Thing& thing1, Thing& thing2)
{

if(thing1 > thing2)
return thing1;

else
return thing2;

}

You can imagine actual implementations for different types of data:

short larger_of_two(short& thing1, short& thing2)
{

if(thing1 > thing2)
return thing1;

else
return thing2;

}

or

double larger_of_two(double& thing1, double& thing2)
{

if(thing1 > thing2)
return thing1;

else
return thing2;

}

or even

Box larger_of_two(Box& thing1, Box& thing2)
{

if(thing1 > thing2)
return thing1;

else
return thing2;

}

which would be practical provided that class Box defines an operator>() function and
permits assignment e.g.:

long Box::Size() { return fwidth*fheight*fbreadth; }

Example, an idea for
a general function

Outline code

Versions for different
data

Instance of outline
for short integer data

Instance of outline
for double data

Instance of outline
for "Boxes"
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int Box::operator>(Box& other) { return Size() > other.Size(); }

…
Box b1;
Box b2;
…
Box bigBox = larger_of_two(b1,b2);

The italicised outline version of the function is a "template" for the other special
purpose versions.  The outline isn't code that can be compiled and used.  The code is the
specialized versions made up for each data type.

Here, the different specializations have been hand coded by following the outline
and changing data types as necessary.  That is just a tiresome coding exercise,
something that the compiler can easily automate.

Of course, if you want the process automated, you had better be able to explain to
the compiler that a particular piece of text is a "template" that is to be adapted as
needed.  This necessitates language extensions.

Assignment operator
needed to use result
of function

25.2 LANGUAGE EXTENSIONS FOR TEMPLATES

25.2.1 Template declaration

The obvious first requirement is that you be able to tell the compiler that you want a
"function definition" to be an outline, a template for subsequent specialization.  This is
achieved using template specifications.

For the example larger_of_two() function, the C++ template would be:

template<class Thing>
Thing larger_of_two(Thing& thing1, Thing& thing2)
{

if(thing1 > thing2)
return thing1;

else
return thing2;

}

The compiler reading the code first encounters the keyword template.  It then knows
that it is dealing with a declaration (or, as here, a definition) of either a template
function or template class.  The compiler suspends the normal processes that it uses to
generate instruction sequences.  Even if it is reading a definition, the compiler isn't to
generate code, at least not yet.  Instead, it is to build up some internal representation of
the code pattern.

Following the template keyword, you get template parameters enclosed within a <
begin bracket and a > end bracket.  The outline code will be using some name(s) to

template keyword

Template parameters
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represent data type(s); the example uses the name Thing.  The compiler has to be
warned to recognize these names.  After all, it is going to have to adapt those parts of
the code that involve data elements of these types.

You can have template functions and classes that are parameterized by more than
one type of data.  For example, you might want some "keyed" storage structure
parameterized according to both the type of the data element stored and the type of the
primary key used to compare data elements.  (This might allow you to have data
elements whose keys were really strings rather than the usual integers.)  Here, multiple
parameters are considered as an "advanced feature".  They will not be covered; you will
get to use such templates in your later studies.

Once it has read the template <…> header, the compiler will consume the
following function or class declaration, or (member) function definition.  No
instructions get generated.  But, the compiler remembers what it has read.

25.2.2 Template instantiation

The compiler uses its knowledge about a template function (or class) when it finds that
function (class) being used in the actual code.  For example, assuming that class Box
and template function larger_of_two() have both been defined earlier in the file, you
could have code like the following:

int main()
{

Box b1(6,4,7);
Box b2(5,5,8);
…
Box bigbox = larger_of_two(b1,b2);
cout << "The bigger box is "; bigbox.PrintOn(cout);
…
double d1, d2;
cout << "Enter values : "; cin >> d1 >> d2;
…
cout << "The larger of values entered was : " <<

larger_of_two(d1, d2) << endl;
…

}

At the point where it finds bigbox = larger_of_two(b1,b2), the compiler notes that it has
to generate the version of the function that works for boxes.  Similarly, when it gets to
the output statement later on, it notes that it must generate a version of the function that
works for doubles.

When it reaches the end of the file, it "instantiates" the various versions of the
template.

Figure 25.1 illustrates the basic idea (and is close to the actual mechanism for some
compilers).

Need version for Box

Need version for
double
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Code in file test.cp

Code with templates expanded

class Box {
public:
 Box(int w, int h, int b);
 int operator>(const Box& other);
 …
};

…
long Box::Size() { … };
…

template<class Thing>
Thing larger_of_two(…)
{
…
}

int main()
{
  Box b1(6, 4, 7);
  …
  Box bigbox = larger_of_two(b1,b2);
  …
  …
  cout << "Larger … "
    << larger_of_two(d1, d2);
 …
}

class Box {
public:
 Box(int w, int h, int b);
 int operator>(const Box& other);
 …
};

…
long Box::Size() { … };
…

template<class Thing>
Thing larger_of_two(…)
{
…
}

int main()
{
  Box b1(6, 4, 7);
  …
  Box larger_of_two(const 
    Box& thing1, const Box& thing2);
  Box bigbox = larger_of_two(b1,b2);
  …
  …
  double larger_of_two(const 
    double&thing1, 
    const double& thing2);
  cout << "Larger … "
    << larger_of_two(d1, d2);
 …
}

Box larger_of_two(…)
{
  if(thing1 > thing2)
     return thing1;
  else 
     return thing2;
}

double larger_of_two(const 
  double& thing1, const double&
  thing2)
{
  if(thing1 > thing2)
     return thing1;
  else 
     return thing2;
}

"forward 
declarations"

Instantiated
versions of 
template

template

Figure 25.1 Illustration of conceptual mechanism for template instantiation.

The scheme shown in Figure 25.1 assumes that the compiler does a preliminary
check through the code looking for use of templates.  When it encounters uses of a
template function, the compiler generates a declaration of a version specialized for the
particular types of data used as arguments.  When it gets to the end of the file, it uses
the template to generate the specialized function, substituting the appropriate type (e.g.
double) for the parametric type (Thing).
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The specialized version(s) of the function can then be processed using the normal
instruction generation mechanisms.

Templates are relatively new and the developers of compilers and linkers are still
sorting out the best ways of dealing with them.  The scheme shown in Figure 25.1 is
fine if the entire program, with all its classes and template functions, is defined in a
single file.

The situation is a little more complex when you have a program that is made up
from many separately compiled and linked files.  You may get references to template
functions in several different files, but you probably don't want several different copies
of "double larger_of_two(const double& d1, const double& d2)" – one copy
for each file where this "function" is implicitly used.

Compiler and linker systems have different ways of dealing with such problems.
You may find that you have to use special compiler directives ("pragmas") to specify
when and how you want template functions (and classes) to be instantiated.  These
directives are system's dependent.  You will have to read the reference manuals for your
IDE to see what mechanism you can use.

Another problem that you may find with your system is illustrated by the following:

template<class Whatsit>
void SortFun(Whatsit stuff[], int num_whatsists)
{

// a standard sort algorithm
…

}

int main()
{

long array1[10], array2[12], array3[17];
int n1, n2, n3;
// Get number of elements and data for three arrays
…
// Sort array1
SortFun(array1, n1);
…
// Deal with array2
SortFun(array2, n2);
…

}

Although in each case you would be sorting an array of long integers, the template
instantiation mechanism might give you three versions of the code.  One would be
specialized for sorting an array of long integers with ten elements; the second would
handle arrays with twelve elements; while the third would be specialized for arrays with
seventeen elements.

This doesn't matter that much, it just wastes a little memory.

Watch out for
compiler specific

mechanisms

Compiler "pragmas"
to control

instantiation
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25.3 SPECIALIZED INSTANTIATIONS OF TEMPLATE CODE

Why does the compiler have to generate the specialized versions of template?
You should realize while that the code for the specialized data types may embody a

similar pattern, the instruction sequences cannot be identical.  All versions of the
example larger_of_two() function take two address arguments (as previously
explained references are handled internally as addresses).  Thus, all versions will start
with something like the following instruction sequence where the addresses of the two
data elements are loaded into registers:

load a0 (address_register0) with stack_frame[…]
Thing& thing1

load a1 (address_register1) with stack_frame[…]
Thing& thing2

After that they have differences.  For example, the generated code for the version with
short integers will be something like:

load (integer register) r0 with two byte integer at a0
load (integer register) r1 with two byte integer at a1
compare r0, r1
branch if greater to pickthing1
// thing2 must be larger
store contents of r1 into 2-byte return field in stack frame
rts
pickthing1:
store contents of r0 into 2-byte return field in stack frame
rts

The code for the version specialized for doubles would be similar except that it would
be working with 8-byte (or larger) data elements that get loaded into "floating point
registers" and it would be a floating point comparison instruction that would be used.

There would be more significant differences in the case of Boxes.  There the
generated code would be something like:

push a0 onto stack
push a1 onto stack
call Box::operator>()
load r0 with contents of return-value from function
clean up stack
test r0
branch if greater to pickthing1
call routine to copy … bytes into return area of stackframe
rts
…

The idea maybe the same, but the realization, the instantiation differs.
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25.4 A TEMPLATE VERSION OF QUICKSORT

The Quicksort function group from Chapter 13 provides a slightly more realistic
example than larger_of_two().

The Quicksort function illustrated earlier made use of two auxiliary functions.
There was a function Partition() that shuffled data elements in a particular subarray
and an auxiliary SelectionSort() function that was used when the subarrays were
smaller than a given limit size.

The version in Chapter 13 specified integer data.  But we can easily make it more
general purpose by just recasting all the functions as templates whose arguments (and
local temporary variables) are of some generic type Data:

const int kSMALL_ENOUGH = 15;

template<class Data>
void SelectionSort(Data d[], int left, int right)
{

for(int i = left; i < right; i++) {
int min = i;
for(int j=i+1; j<= right; j++)

if(d[j] < d[min]) min = j;
Data temp = d[min];
d[min] = d[i];
d[i] = temp;

}
}

template<class Data>
int Partition(Data d[], int left, int right)
{

Data val =d[left];
int lm = left-1;
int rm = right+1;
for(;;) {

do
rm--;

while (d[rm] > val);

do
lm++;

while( d[lm] < val);

if(lm<rm) {
Data tempr = d[rm];
d[rm] = d[lm];
d[lm] = tempr;
}

else

Template
SelectionSort

Template Partition
function
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return rm;
}

}

template<class Data>
void Quicksort(Data d[], int left, int right)
{

if(left < (right-kSMALL_ENOUGH)) {
int split_pt = Partition(d,left, right);
Quicksort(d, left, split_pt);
Quicksort(d, split_pt+1, right);
}

else SelectionSort(d, left, right);
}

The following test program instantiates two versions of the Quicksort group:

const int kBIG = 350;
int data[kBIG];
double data2[kBIG*2];

int main()
{

int i;
for(i=0;i <kBIG;i++)

data[i] = rand() % 15000;

Quicksort(data, 0, kBIG-1);

for(i = 0; i < 100; i++) {
cout << data[i] << ", ";
if(5 == (i % 6)) cout << endl;
}

cout << "----" << endl;

for(i=0;i <kBIG*2;i++)
data2[i] = (rand() % 30000)/7.0;

Quicksort(data2, 0, kBIG-1);
for(i = 0; i < 100; i++) {

cout << data2[i] << ", ";
if(5 == (i % 6)) cout << endl;
}

cout << "----" << endl;

…

This test program runs successfully producing its two lots of sorted output:

54, 134, 188, 325, 342, 446,

Template QuickSort

Need Quicksort for
integer

and a Quicksort for
doubles
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524, 585, 609, 610, 629, 639,
…
3526, 3528, 3536, 3540, ----

13.142, 25.285, 41.142, 49.571, 54.142, 58.142,
…
1129.714, 1134.142, 1135.857, 1140, ----

But you must be a little bit careful.  How about the following program:

char *msgs[10] = {
"Hello World",
"Abracadabra",
"2,4,6,8 who do we appreciate C++ C++ C++",
"NO",
"Zanzibar",
"Zurich",
"Mystery",
"help!",
"!pleh",
"tenth"

};

int main()
{

int i;
for(i = 0; i < 10; i++)

cout << msgs[i] << ", " << endl;
cout << "----" << endl;

Quicksort(msgs, 0,9);
for(i = 0; i < 10; i++)

cout << msgs[i] << ", " << endl;
cout << "----" << endl;

return 0;
}

The output this time is as follows:

Hello World,
Abracadabra,
2,4,6,8 who do we appreciate C++ C++ C++,
NO,
Zanzibar,
Zurich,
Mystery,
help!,
!pleh,
"tenth",

Beware of silly errors
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----
Hello World,
Abracadabra,
2,4,6,8 who do we appreciate C++ C++ C++,
NO,
Zanzibar,
Zurich,
Mystery,
help!,
!pleh,
"tenth",
----

Problems!  They aren't sorted; they are still in the original order!  Has the sort routine
got a bug in it?  Maybe there is something wrong in the SelectionSort() part as its
the only bit used with this small set of data.

Another trial, one that might be more informative as to the problem:

int main()
{

int i;

char *msgs2[10];
msgs2[0] = msgs[3]; msgs2[1] = msgs[2];
msgs2[2] = msgs[8]; msgs2[3] = msgs[9];
msgs2[4] = msgs[7]; msgs2[5] = msgs[0];
msgs2[6] = msgs[1]; msgs2[7] = msgs[4];
msgs2[8] = msgs[6]; msgs2[9] = msgs[5];
for(i = 0; i < 10; i++)

cout << msgs2[i] << ", " << endl;
cout << "----" << endl;

Quicksort(msgs2, 0,9);
for(i = 0; i < 10; i++)

cout << msgs2[i] << ", " << endl;

return 0;
}

This produces the output:

NO,
2,4,6,8 who do we appreciate C++ C++ C++,
!pleh,
tenth,
help!,
Hello World,
Abracadabra,
Zanzibar,
Mystery,

A sort that didn't
sort?

What is really
happening?

Shuffle the data
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Zurich,
----
Hello World,
Abracadabra,
2,4,6,8 who do we appreciate C++ C++ C++,
NO,
Zanzibar,
Zurich,
Mystery,
help!,
!pleh,
tenth,

This time the call to Quicksort() did result in some actions.  The data in the array
msgs2[] have been rearranged.  In fact, they are back in exactly the same order as they
were in the definition of the array msgs[].

What has happened is that the Quicksort group template has been instantiated to sort
an array of pointers to characters.  No great problems there.  A pointer to character is
internally the same as an unsigned long.  You can certainly assign unsigned longs, and
you can also compare them.

We've been sorting the strings according to where they are stored in memory, and
not according to their content!  Don't get caught making silly errors like this.

You have to set up some extra support structure to get those strings sorted.  The
program would have to be something like the following code.  Here a struct Str has
been defined with associated operator>() and operator<() functions.  A Str struct
just owns a char* pointer; the comparison functions use the standard strcmp()
function from the string library to compare the character strings that can be accessed via
the pointers.  A global operator<<(ostream&, …) function had also to be defined to
allow convenient stream output.

struct Str {
char* mptr;
int operator<(const Str& other) const

{ return strcmp(mptr, other.mptr) < 0; }
int operator>(const Str& other) const

{ return strcmp(mptr, other.mptr) > 0; }
};

ostream& operator<<(ostream& out, const Str& s) {
out << s.mptr; return out;

}

Str msgs[10] = {
"Hello World",
…
"tenth"

};

Sorted back into the
order of definition!

Sorting by location in
memory!
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int main()
{

int i;

Quicksort(msgs, 0,9);
for(i = 0; i < 10; i++)

cout << msgs[i] << ", " << endl;

return 0;
}

This program produces the output:

!pleh,
2,4,6,8 who do we appreciate C++ C++ C++,
Abracadabra,
Hello World,
Mystery,
NO,
Zanzibar,
Zurich,
help!,
tenth,

which is sorted.  (In the standard ASCII collation sequence for characters, digits come
before letters, upper case letter come before lower case letters.)

25.5 THE TEMPLATE CLASS "BOUNDED ARRAY"

Some languages, e.g. Pascal, have "bounded arrays".  A programmer can define an
array specifying both a lower bound and an upper bound for the index used to access
the array.  Subsequently, every access to the array is checked to make sure that the
requested element exists.  If an array has been declared as having an index range 9 to 17
inclusive, attempts to access elements 8 or 18 etc will result in the program being
terminated with an "array bounds violation" error.

Such a structure is easy to model using a template Array class.  We define a
template that is parameterized by the type of data element that is to be stored in the
array.  Subsequently, we can have arrays of characters, arrays of integers, or arrays of
any user defined structures.

What does an Array own?  It will have to remember the "bounds" that are supposed
to exist; it needs these to check accesses.  It will probably be convenient to store the
number of elements, although this could information could always be recomputed  An
Array needs some space for the actual stored data.  We will allocate this space on the
heap, and so have a pointer data member in the Array.  The space will be defined as an

An Array owns …
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array of "things" (the type parameter for the class).  Of course it is going to have to be
accessed as a zero based array, so an Array will have to adjust the subscript.

An Array object will probably be asked to report its lower and upper subscript
bounds and the number of elements that it owns; the class should provide access
functions for these data.  The main thing that an Array does is respond to the [] (array
subscripting) operator.

The [] is just another operator.  We can redefine operator[] to suit the needs of
the class.  We seem to have two ways of using elements of an array (e.g. Counts – an
array of integers), as "right values":

n = Counts[6];

and as "left values":

Counts[2] += 10;

(The "left value" and "right value" terminology refers to the position of the reference to
an array element relative to an assignment operator.)  When used as a "right value" we
want the value in the array element; when used as a "left value" we want the array
element itself.

Both these uses are accommodated if we define operator[] as returning a
reference to an array element.  The compiler will sort out from context whether we need
a copy of the value in that element or whether we are trying to change the element.

How should we catch subscripting errors?  The easiest way to reproduce the
behaviour of a Pascal bounded array will be to have assert() macros in the accessing
function that verify the subscript is within bounds.  The program will terminate with an
assertion error if an array is out of bounds.

Template class declaration

The template class declaration is as follows:

template<class DType>
class Array {
public:

Array(int low_bnd, int high_bnd);
~Array();

int Size() const;
int Low() const;
int High() const;

DType& operator[](int ndx);
void PrintOn(ostream& os);

private:

An Array does …

Reference to an array
element

Assertions
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void operator=(const Array &a);
Array(const Array &a);
DType *fData;
int flow;
int fhigh;
int fsize;

};

As in the case of a template function, the declaration starts with the keyword template,
and then in < > brackets, we get the parameter specification.  This template is
parameterized by the type DType.  This will represent the type of data stored in the array
– int, char, Aircraft, or whatever.

The class has a constructor that takes the lower and upper bounds, and a destructor.
Actual classes based on this template will be "resource managers" – they create a
structure in the heap to store their data elements.  Consequently, a destructor is needed
to get rid of this structure when an Array object is no longer required.

There are three simple access functions, Size() etc, and an extra – PrintOn().
This may not really belong, but it is useful for debugging.  Function PrintOn() will
output the contents of the array; its implementation will rely on the stored data elements
being streamable.

The operator[]() function returns a "reference to a DType" (this will be a
reference to integer, or reference to character, or reference to Aircraft depending on
the type used to instantiate the template).

The declaration declares the copy constructor and operator=() function as private.
This has been done to prevent copying and assignment of arrays.  These functions will
not be defined.  They have been declared as private to get the compiler to disallow
array assignment operations.

You could if you preferred make these functions public and provide definitions for
them.  The definitions would involve duplicating the data array of an existing object.

The data members are just the obvious integer fields needed to hold the bounds and
a pointer to DType (really, a pointer to an array of DType).

Template class definition

All of the member functions must be defined as template functions so their definitions
will start with the keyword template and the parameter(s).

The parameter must also be repeated with each use of the scope qualifier operator
(::).  We aren't simply defining the Size() or operator[]() functions of class Array
because there could be several class Arrays (one for integers, one for Aircraft etc).
We are defining the Size() or operator[]() functions of the class Array that has
been parameterized for a particular data type.  Consequently, the parameter must
modify the class name.

Constructor

Access functions

Array subscripting

Copying of array
disallowed
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The constructor is straightforward.  It initializes the array bounds (first making
certain that the bounds have been specified from low to high) and creates the array on
the heap:

template<class DType>
Array<DType>::Array(int low_bnd, int high_bnd)
{

assert(low_bnd < high_bnd);
fsize = high_bnd - low_bnd;
fsize += 1; // low to high INCLUSIVE
flow = low_bnd;
fhigh = high_bnd;

fData = new DType[fsize];
}

The destructor simply gets rid of the storage array.  The simple access functions are
all similar, only Size() is shown:

template<class DType>
Array<DType>::~Array()
{

delete [] fData;
}

template<class DType>
int Array<DType>::Size() const
{

return fsize;
}

Function PrintOn() simply runs through the array outputting the values.  The
statement os << fData[i] has implications with respect to the instantiation of the
array.  Suppose you had class Point defined and wanted a bounded array of instances
of class Point.  When the compiler does the work of instantiating the Array for
Points, it will note the need for a function operator<<(ostream&, const Point&).
If this function is not defined, the compiler will refuse to instantiate the template.  The
error message that you get may not be particularly clear.  If you get errors when
instantiating a template class, start by checking that the data type used as a parameter
does support all required operations.

template<class DType>
void Array<DType>::PrintOn(ostream& os)
{

for(int i=0;i<fsize;i++) {
int j = i + flow;
os << "[" << setw(4) << j << "]\t:";
os << fData[i];

Constructor

Destructor and
simple access

functions

Output function
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os << endl;
}

}

The operator[]() function sounds terrible but is actually quite simple:

template<class DType>
DType& Array<DType>::operator[](int ndx)
{

assert(ndx >= flow);
assert(ndx <= fhigh);

int j = ndx - flow;

return fData[j];
}

The function starts by using assertions to check the index given against the bounds.  If
the index is in range, it is remapped from [flow … fhigh] to a zero based array and
then used to index the fData storage structure.  The function simply returns fData[j];
the compiler knows that the return type is a reference and it sorts out from left/right
context whether it should really be using an address (for left value) or contents (for right
value).

Template class use

The following code fragments illustrate simple applications using the template Array
class.  The first specifies that it wants an Array that holds integers.  Note the form of
the declaration for Array a; it is an Array, parameterized by the type int.

#include <iostream.h>
#include <iomanip.h>
#include <ctype.h>
#include <assert.h>

template<class DType>
class Array {
public:
…
};

// Definition of member functions as shown above
…

int main()
{

Array indexing

Code fragments using
Array template
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Define an Array of
integers

Array<int> a(3,7);

cout << a.Size() << endl;

a[3] = 17; a[4] = 21; a[5] = a[3] + a[4];
a[6] = -1; a[7] = 123;

a.PrintOn(cout);

return 0;
}

The second example uses an Array<int> for counters that hold letter frequencies:

int main()
{

Array<int> letter_counts('a', 'z');
for(char ch = 'a'; ch <= 'z'; ch++)

letter_counts[ch] = 0;
cout << "Enter some text,terminate with '.'" << endl;

cin.get(ch);
while(ch != '.') {

if(isalpha(ch)) {
ch = tolower(ch);
letter_counts[ch] ++;
}

cin.get(ch);
}

cout << endl << "-----" << endl;
cout << "The letter frequencies are " << endl;
letter_counts.PrintOn(cout);
return 0;

}

(The character constants 'a' and 'z' are perfectly respectable integers and can be used as
the low, high arguments needed when constructing the array.)

These two examples have both assumed that the template class is declared, and its
member functions are defined, in the same file as the template is employed.  This
simplifies things, there are no problems about where the template should be
instantiated.  As in the case of template functions, things get a bit more complex if your
program uses multiple files.  The mechanisms used by your IDE for instantiating and
linking with template classes will be explained in its reference manual..

25.6 THE TEMPLATE CLASS QUEUE
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The collection classes from Chapter 21 are all candidates for reworking as template
classes.  The following is an illustrative reworking of class Queue.  The Queue in
Chapter 21 was a "circular buffer" employing a fixed sized array to hold the queued
items.

The version in Chapter 21 held pointers to separately allocated data structures. So,
its Append() function took a void* pointer argument, its fData array was an array of
pointers, and function First() returned a void*.

The new version is parameterized with respect to the data type stored.  The
declaration specifies a Queue of Objs, and an Obj is anything you want it to be.  We
can still have a queue that holds pointers.  For example, if we already have separately
allocated Aircraft objects existing in the heap we can ask for a queue that makes Obj
an Aircraft* pointer.  But we can have queues that hold copies of the actual data
rather than pointers to separate data.  When working with something like Aircraft
objects, it is probably best to have a queue that uses pointers; but if the data are of a
simpler data type, it may be preferable to make copies of the data elements and store
these copies in the Queue's array.  Thus, it is possible to have a queue of characters
(which wouldn't have been very practical in the other scheme because of the substantial
overhead of creating single characters as individual structures in the heap).

Another advantage of this template version as compared with the original is that the
compiler can do more type checking.  Because the original version of
Queue::Append() just wanted a void* argument, any address was good enough.  This
is a potential source of error.  The compiler won't complain if you mix up all addresses
of different things (char*, Aircraft*, addresses of functions, addresses of automatic
variables), they are all just as good when all that is needed is a void*.

When something was removed from that queue, it was returned as a void* pointer
that then had to be typecast to a useable type.  The code simply had to assume that the
cast was appropriate.  But if different types of objects were put into the queue, all sorts
of problems would arise when they were removed and used.

This version has compile time checking.  The Append() function wants an Obj –
that is an Obj that matches the type of the instantiated queue.  If you ask for a queue of
Aircraft* pointers, the only thing that you can append is an Aircraft*; when you
take something from that queue it will be an Aircraft* and the compiler can check
that you use it as such.  Similarly, a queue defined as a queue of char will only allow
you to append a char value and will give you back a char.  Such static type checking
can eliminate many errors that result from careless coding.

The actual declaration of the template is as follows:

template<class Obj>
class Queue {
public:

Queue();

void Append(Obj newobj);
Obj First();

Choice of data copies
or data pointers

Type safety
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int Length() const;
int Full() const;
int Empty() const;

private:
Obj fdata[QSIZE];
int fp;
int fg;
int fcount;

};

The definitions of the member functions are:

template<class Obj>
inline int Queue<Obj>::Length() const { return fcount; }

template<class Obj>
inline int Queue<Obj>::Full() const {

return fcount == QSIZE;
}

template<class Obj>
inline int Queue<Obj>::Empty() const {

return fcount == 0;
}

template<class Obj>
Queue<Obj>::Queue()
{

fp = fg = fcount = 0;
}

The Append() and First() functions use assert() macros to verify correct usage:

template<class Obj>
void Queue<Obj>::Append(Obj newobj)
{

assert(!Full());
fdata[fp] = newobj;
fp++;
if(fp == QSIZE)

fp = 0;
fcount++;
return;

}

template<class Obj>
Obj Queue<Obj>::First(void)
{

assert(!Empty());

Access functions

Constructor
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Obj temp = fdata[fg];
fg++;

if(fg == QSIZE)
fg = 0;

fcount--;
return temp;

}

The following is an example code fragment that will cause the compiler to generate
an instance of the template specialized for storing char values:

int main()
{

Queue<char> aQ;
for(int i=0; i < 100; i++) {

int r = rand() & 1;
if(r) {

if(!aQ.Full()) {
char ch = 'a' + (rand() % 26);
aQ.Append(ch);
cout << char(ch - 'a' + 'A');
}

}
else {

if(!aQ.Empty()) cout << aQ.First();
}

}
return 0;

}


